

The 2019 ICPC Caribbean Local Contests

Real Contest Editorial

Editorial developers

Marcelo Fornet (NEAR, Cuba)

Carlos Joa (INTEC, República
Dominicana)

Dovier Ripoll (UCI, Cuba)

Reynaldo Gil (Datys, Cuba)

Carlos Toribio (Google, República
Dominicana)

Elio Govea (UPR, Cuba)

Rubén Alcolea (UCI, Cuba)

Ernesto Peña (UO, Cuba)

September 22nd, 2019

The 2019 ICPC Caribbean Local Contests - Real Contest Editorial

About this document

This document is an analysis of The 2019 ICPC Caribbean Local Contests (Real). It

describes a sketch of the solution for every problem. They are not intended to be a

complete solution but just an outline of how the judge’s solution looks like. For some

of the problems, we are releasing some extra challenges. If you spot an error, have a

comment about the competition or this editorial, or just want to provide some

feedback, please send an email to icpc.carib.cjc@gmail.com.
Judge Team

Summary

This year, for technical reasons, we use the brand new platform MOG instead of the

well known legendary COJ. As judges, we were very pleased with the development

and results of the contest regarding interaction with the platform. There were 40

teams participating officially in the contest and 49 teams competing as guests. If you

were a participant/observer and had some issues with the platform, let us know so we

can address them for future contests.

The contest began with an incredible start by team UH++ solving the 3 easiest

problems in 13 minutes (all first to solve). During the first hour, teams were working

on the easiest problems, up until a few minutes after the first hour when team

UH_wake_me_up! solved problem H. This year, for the first time, the set contained a

problem with two versions: the easy version was noticeably easier compared with the

second version. This required some strategic decisions from part of the teams, and we

see how UH_wake_me_up! and DECB didn’t solve both versions independently but

went directly for the big pot. We think that strategies during the competition plays a

big role in the final result, and in this case the strategy for UH_wake_me_up! turned

out to be a winning one.

We commented the full contest in this post, so you can relive the excitement of the

1

https://matcomgrader.com/contest/problems/6245
mailto:icpc.carib.cjc@gmail.com
http://matcomgrader.com/
http://coj.uci.cu/
https://matcomgrader.com/contest/6245/team/3080/submissions
https://matcomgrader.com/contest/6245/team/3070/submissions
https://matcomgrader.com/contest/6245/team/3070/submissions
https://matcomgrader.com/contest/6245/team/3078/submissions
https://matcomgrader.com/contest/6245/team/3070/submissions
https://matcomgrader.com/post/5186/the-2019-icpc-caribbean-local-contests/

The 2019 ICPC Caribbean Local Contests - Real Contest Editorial

competition up until the frozen time. Watch in this video what happened during the

frozen time. Spoiler alert: Limitless solved 3 problems in the last hour and went

from 8th place to 2nd place. What an amazing climb! UH_wake_me_up! solved their

8th problem with 22 seconds to go at the end of the contest, very impressive.

You can read statements of the problems in english and spanish using the following

links: English, Spanish. During the competition, we see how C++ was by far the most

popular language among

contestants. This was also the

case for judges, but we did our

best to solve problems with java

and python. Similar to Regional

Contest and World Finals we

guaranteed solutions in C++/Java,

but unfortunately this was not

the case for Python and other

languages.

For every problem in this

document, we provide length of

the shortest submission from

judges and from participants (in case they exist). Keep in mind that solutions were not

written with the intention to be short (they can be shortened trivially in most cases),

but it is reported to show the magnitude of the size of the code that solves each

problem. The graph shown with the problems have the number of submissions during

the competition time. They are grouped in intervals of 20 minutes.

The expected order of problems difficulties from judge point of view was

JG|AE|DHF|IKBC. The real order (from number of accepted submissions per

problem) was GJA|EHD|FB|KIC.

2

https://www.youtube.com/watch?v=UtI7QEB4T5g
https://matcomgrader.com/contest/6245/team/3058/submissions
https://matcomgrader.com/contest/6245/team/3070/submissions
https://matcomgrader.com/media/contests/6245/secured/9XYTPKJ9CVRfAG8BH4trZTNUcygMN3Wn/problems-en.pdf
https://matcomgrader.com/media/contests/6245/secured/9XYTPKJ9CVRfAG8BH4trZTNUcygMN3Wn/problems-es.pdf

The 2019 ICPC Caribbean Local Contests - Real Contest Editorial

Problem A: String in the tree I

Author: Carlos J. Toribio

Solved/Tried by 31/36 teams

First solved after 13 minutes by UH++

Shortest team solution: 633 bytes

Shortest judge solution: 495 bytes

SOLUTION: The constraints for the easy version allows to brute force the answer. We

can check for every vertex, how many paths starts from it that contains the required

pattern. This can be done easily using DFS algorithm. This solution runs in (N L)O ·

time and needs space.(N L)O +

3

https://matcomgrader.com/contest/6245/team/3080/submissions

The 2019 ICPC Caribbean Local Contests - Real Contest Editorial

Problem B: String in the tree II

Author: Carlos J. Toribio

Solved/Tried by 2/11 teams

First solved after 123 minutes

by UH_wake_me_up!

Shortest team solution: 3913 bytes

Shortest judge solution: 6183 bytes

This problem was intended to be one of the hardest of the competition. It requires

advanced knowledge of graph (centroid decomposition) and string manipulation. It

also requires heavy and careful implementation.

SOLUTION: First, let’s fix a node u and count how many paths pass through this node

that are equal to the pattern. For this, we enumerate all paths starting from this node

(using DFS) and store in a frequency array if they are a valid prefix or a valid suffix

(maybe both) of the pattern. While we are aggregating this information we should

count how many (prefix, suffix) pairs exist such that prefix + u + suffix match the

pattern. Take care of not counting paths that go through the same vertex below u.

After we count paths passing through u, we can remove this vertex and solve the

problem in the remaining subtrees. To fit this solution in time, the special vertex can’t

be chosen arbitrarily, otherwise the solution would be quadratic in the number of

nodes. Instead we should choose the centroid of the tree. This is a node such that, if it

were the root of the tree, every subtree hanging from it has size at most half of the

entire tree size. You can prove such node always exists and can be found in O(n).

To match prefixes and suffixes you can use hash or other fancy suffix data structures

such as suffix automata. Overall complexity is .(n og(n))O · l

4

https://matcomgrader.com/contest/6245/team/3070/submissions

The 2019 ICPC Caribbean Local Contests - Real Contest Editorial

Problem C: Chinese curves

Author: Reynaldo Gil, Carlos J. Toribio

Solved/Tried by 0/4 teams

First solved: -

Shortest team solution: -

Shortest judge solution: 2148 bytes

This problem was intended to be the hardest

of the competition. All submissions during the contest used brute force, but the

constraints of this problem didn’t allow such submissions to fit in time.

SOLUTION: We can use a brute force algorithm for x coordinates with absolute value

less than 40. For the remaining coordinates, the first factor in the curves’ equations,

, is almost constant, so it can be assumed constant.rctan(e a)a x +

Therefore, it is necessary to work with functions of the form that fulfills (in √b c· x2 +

the range x > 0) that each pair of functions have a single intersection point. For this

part, queries can be answered using data structures similar to those used with straight

lines, for example, lichao-tree.

The time complexity expected in the solution is O(n log(n)) and the spatial one is O(n).

5

https://cp-algorithms.com/geometry/convex_hull_trick.html#toc-tgt-1

The 2019 ICPC Caribbean Local Contests - Real Contest Editorial

Problem D: Set

Author: Elio Govea

Solved/Tried by 8/12 teams

First solved after 89 minutes

by ◔ Pac-men •••

Shortest team solution: 673 bytes

Shortest judge solution: 908 bytes

SOLUTION: If L < N, there is no solution. Otherwise let Smin = and Smax = . If ∑
n

i=1
i ∑

L

i=L−N+1
i

S < Smin or Smax < S, there is no solution.

For any other case, there is at least one solution. If S = Smin, then R={1, 2, ..., N}, and for

any other S ≤ Smax, it is possible to build a solution from the solution for S - 1 because

there will always exist at least an element x such that x + 1 ≤ L and x + 1 ∉ R (changing

x by x + 1 in R).

It is possible to build the solution as it was described before, starting with R = {1, 2, ...,

N}, and always taking the greatest of all x (let’s call this element f(R)) as it will repeat

that the number x that is taken and increased in one, in the next step it will be

selected again unless it no longer meets the conditions. It will occur at most L - N

times. Let’s call a big step the fact of taking f(x) and change it for f(x) + L - N, and q the

number of big steps necessary to find the solution, then q can be computed with the

formula (Notice that after q big steps, R has the form {1, ..., N - q} {L - q + ⌋ q = ⌊ L − N
S−Smin ⋃

1, ..., L} and f(R) = N - q). After that, it is needed at most one more step in which f(R) is

replaced by f(R) + k, where k is the difference to obtain the required sum (k < L - N).

6

https://matcomgrader.com/contest/6245/team/3132/submissions

The 2019 ICPC Caribbean Local Contests - Real Contest Editorial

Overall complexity of described solution is . Solutions that use binary search will (1)O

also run fast enough. In general, sublinear solutions are required to solve the

problem.

7

The 2019 ICPC Caribbean Local Contests - Real Contest Editorial

Problem E: Rotate circles

Author: Marcelo Fornet

Solved/Tried by 12/21 teams

First solved after 107 minutes by Tommy

Shortest team solution: 1246 bytes

Shortest judge solution: 1374 bytes

SOLUTION: Since colors from all regions are different for every circle, after fixing one

circle, there is at most one valid rotation for every other circle. The solution is to fix

one circle, and try to find if other circles can be rotated in such a way that satisfy the

condition of the problem. The answer is always an integer between 0 and 4. Solutions

using backtracking will work in time, since the branching factor is only four in the

first step, in further steps it will be at most 1.

Overall complexity is .(N)O · M

8

https://matcomgrader.com/contest/6245/team/3173/submissions

The 2019 ICPC Caribbean Local Contests - Real Contest Editorial

Problem F: Sigma

Author: Marcelo Fornet

Solved/Tried by 2/3 teams

First solved after 221 minutes

by Limitless

Shortest team solution: 3834 bytes

Shortest judge solution: 3235 bytes

SOLUTION: There is always a solution to exactly one of the two children. Let's build

the following directed weighted graph: Split and replace every node u into two nodes

u_b and u_e. For every node u in the original graph, create a directed edge from u_b

to u_e with capacity 1. For every edge in the original graph between nodes u and v,

create a directed edge in the new graph from u_e to v_b with capacity .∞

In this new graph, find the maximum flow from node F_e to node M_b setting weight

of each edge as the capacity. Assume that maximum flow equals G. If G ≤ K there is a

solution for Fito's puzzle. Otherwise (K + 1 ≤ G), there is a solution for Maria's puzzle.

Let’s build the solution for each puzzle. In both cases, we will be using the residual

network associated to the graph after finding the maximum flow.

Fito's puzzle: To solve Fito’s puzzle, we need to find the minimum cut of this graph.

Note that edges belonging to the cut will have capacity 1. Otherwise the cut would

have value , which we know is not optimal. Each edge with capacity 1 is associated ∞

with a node in the original graph, and those nodes are the ones that need to be

9

https://matcomgrader.com/contest/6245/team/3058/submissions

The 2019 ICPC Caribbean Local Contests - Real Contest Editorial

removed.

Maria's puzzle: If maximum flow is equal to G, we can extract G paths in this network

following augmenting paths. Note that two paths won't pass through the same node

since capacity of edges associated with nodes on the original graph is 1.

To find the residual network of the maximum flow, we can use Dinic algorithm. In

practice, instead of using capacity, using a large number such as N (or even 2) will ∞

do the work.

In graphs such that augmenting paths are bounded with 1 Dinic algorithm has

asymptotic behavior . Overall complexity is dominated by finding max flow in (n)O 2
3

the network. Our solutions with Ford Fulkerson don’t pass in time, since there exists

some pathological cases in which the algorithm behavior is where n is the (n)O 2

number of nodes in the original graph.

10

The 2019 ICPC Caribbean Local Contests - Real Contest Editorial

Problem G: Three numbers

Author: Marcelo Fornet

Solved/Tried by 84/90 teams.

First solved after 2 minutes by UH++

Shortest team solution: 211 bytes

Shortest judge solution: 99 bytes

This was intended to be one of the easiest problems of the competition. As expected

there were several solutions without loops, but it remains a tricky problem if

implemented without care.

SOLUTION: Iterate through every triplet and check if it is valid or not. Report any

valid triplet. On the other hand, you can prove that among the triplets: (1, 2, 3), (2, 3,

4), (3, 4, 5), (4, 5, 6) there is at least one valid triplet, so this problem can be solved

without loops by checking at most 4 triplets.

BONUS: What is the shortest solution you can write without using loops?

11

https://matcomgrader.com/contest/6245/team/3080/submissions

The 2019 ICPC Caribbean Local Contests - Real Contest Editorial

Problem H: Queries with recurrences
Author: Rubén Alcolea

Solved/Tried by 11/23 teams.

First solved after 64 minutes

by UH_wake_me_up!

Shortest team solution: 2553 bytes

Shortest judge solution: 2749 bytes

SOLUTION: This is a classical range query problem that can be solved with segment

tree and lazy propagation. Here, the main challenge is efficiently compute the value Fn

before each update operation.

The iterative solution to compute Fn does not pass the time limit. Instead, we can

compute Fn using recurrence relation and matrix exponentiation in O(logN) without

affecting the expected complexity (O(logN)) of the segment tree. Fn can be expressed in

matrix notation in the following way:

12

https://matcomgrader.com/contest/6245/team/3070/submissions

The 2019 ICPC Caribbean Local Contests - Real Contest Editorial

The final solution uses a segment tree with lazy propagation and also includes

necessary methods to compute Fn before each update operation. The final complexity

is O(Q logN).

13

The 2019 ICPC Caribbean Local Contests - Real Contest Editorial

Problem I: Build me a fence

Author: Carlos J. Toribio
Solved/Tried by 0/1 teams.

First solved: ∞

Shortest team solution: ∞

Shortest judge solution: 3631 bytes

The original version of this problem asked to find the polygon with largest area. The

conditions were relaxed to find any valid non-degenerate polygon. The goal of this

change was to make this problem more accessible to participants, but it seems we

failed to do so. The submission graph is impressively empty (the first submission for

this problem was 1 second before the competition ended, and the verdict was

Compilation Error). Why are contestants so scared about geometry? It doesn’t bite :-)

This problem was a step further of problem C (Can you draw it?) from the warmup

contest.

Solution 1:

We can prove that there is always a polygon that fulfills these conditions and whose

points touch a single circle and this is the polygon with the largest area. This

demonstration is not very complex and it can be found here.

After knowing this, we can do a binary search over the radius of the circle, then we

put each side in that circle in such a way that each side is a chord of the circle and

therefore it occupies an arc. The sum total of all arcs must be 360 degrees. It is

possible to determine the angle covered by that chord with the radius and the length

of the chord (side). If the total angle is greater than 360, then the radius is too small,

14

http://www.drking.org.uk/hexagons/misc/polymax.html

The 2019 ICPC Caribbean Local Contests - Real Contest Editorial

otherwise the radius is too big.

There is a special case: if using the smallest possible radius (max(ai)/2) we cannot build

the polygon (the angle of the arcs adds up to less than 360), then we must assume that

there is a side covering more than 180 degrees and it is the biggest side. If F(r, l)

represents the angle covered by that side, then we can compute 360 - F(r, l) (only for

the biggest side) and it will be the angle covered by the biggest side. So, we can apply

the previous binary search with that additional condition.

Solution 2:

If we assume the biggest side as a0, then there is a number j such that:

Therefore, it is possible to form a triangle such that the sides are:

The only problem is when the two sides in expression 1 are strictly equal. In that case,

it is possible to take two sides of (2) or (3) and to do an elbow, then replace those two

sides with the length of that elbow and it will be less than a0 instead of equal.

15

The 2019 ICPC Caribbean Local Contests - Real Contest Editorial

Problem J: Elevator

Author: Reynaldo Gil

Solved/Tried by 82/87 teams.

First solved after 6 minutes by UH++

Shortest team solution: 64 bytes

Shortest judge solution: 103 bytes

SOLUTION: This problem can be solved using a greedy algorithm. In each delivery,

we move the elevator to the highest floor where there are still missing packages to be

delivered and we carry up as many packages as possible. This strategy is always

optimal.

The number of deliveries can also be computed as (m / k) + (m % k != 0), where (m % k)

represents the remainder of the integer division.

16

https://matcomgrader.com/contest/6245/team/3080/submissions

The 2019 ICPC Caribbean Local Contests - Real Contest Editorial

Problem K: Polygon

Author: Ernesto Peña
Solved/Tried by 0/3 teams.

First solved: ∞

Shortest team solution: ∞

Shortest judge solution: 1620 bytes

For this problem, we propose solutions for a version with number of vertices up to 20

and then the version with number of vertices up to 300. Both versions require clever

insights and use of Dynamic Programming to speed up the solution. There is a part of

the problem which requires some geometry checks, but submissions during the

competitions missed that.

SOLUTION: The solution for this problem is composed of two parts. The first one is

determining which diagonals we can draw in a valid triangulation, and the second

part is calculating an optimal triangulation.

For the first part we must handle several cases:

1. A diagonal passes through vertex c of the polygon. In this case we should ab

handle diagonal as two separate diagonals, and .ab ac ab

2. A diagonal intersects any segment of the polygon. This diagonal is obviously

impossible to draw without cutting the polygon.

3. At this point, if the current diagonal has passed cases 1 and 2, it means that is

strictly inside or outside the polygon. So, we should check if it's inside. For this, we

could just check if some point of the segment is an interior point or not.

17

The 2019 ICPC Caribbean Local Contests - Real Contest Editorial

This part can be done in O(n3).

Now we will try to solve the second part of the problem. To do this we should find an

optimal triangulation.

For n 20:≤

What we are going to do is to try all possible triangulation and get the optimal

minimum one. For this we are going to use bitmasks and dynamic programming.

To solve the problem for a particular polygon, we are going to check every valid

diagonal and for each one, to split the polygon in two polygons that we are going to

solve recursively. The current polygon is composed by the active bits in the mask, and

two vertices are adjacent in our polygon if between them all bits are zeroes. Of course,

this mask should be cyclic, since we are handling a polygon, and all masks may not be

reachable, except if the polygon is convex. When we reach a mask (polygon)

consisting only of three bits, we must return the cost of such triangle.

To construct the two parts of the divided polygon for a fixed diagonal, we could just

travel around the border of the polygon from one endpoint of the diagonal until we

reach the other endpoint. This part has linear complexity, and fixing all diagonals is

O(n2), so, taking into account that we are going to do this for each possible polygon (all

2n masks), the overall complexity of the solution is O(n3 + 2n • n3), considering we are

memoizing the best solution for each mask to avoid recalculating any state.

Unfortunately, this is a bit slow for getting Accepted. But we can improve this solution

with the following observation. Suppose we are going to triangulate a polygon where

vertices v and u are adjacent. This means that v and u must share a triangle and there

must be a diagonal that goes through vertex v or vertex u if the polygon is not a

triangle itself. Now we can just find a pair of adjacent vertices and try all possible

18

The 2019 ICPC Caribbean Local Contests - Real Contest Editorial

diagonals for these two vertices. Now the number of diagonals we are going to check

for each mask is linear and so, we remove an O(n) factor of the solution, getting a

complexity of O(n3 + 2n • n2).

Another way to improve the solution is to handle the diagonals from vertices v and u

in order (clockwise or counterclockwise) of the polygon vertices, and keep track of the

two parts of the divided polygon as we change from one diagonal to another. Thus, we

avoid to travel around the border of the polygon and remove another O(n) factor,

achieving a total complexity of O(n3 + 2n • n).

For n 300:≤

For this version of the problem we should improve even further the solution. To do so,

we are going to use dynamic programming, but with a different approach. Our DP

state is going to be a pair (a , b), meaning that we are going to triangulate the polygon

composed by all points in between points a and b and delimited by diagonal . Thus ab

the initial state could be pair (0, n-1), meaning that we would like to triangulate

polygon composed by all points and delimited by diagonal , that is a side in this 0, n − 1

case. So in this version, we should consider the sides of the polygon as possible

diagonals.

Since a and b are consecutive points in the polygon, they must share a triangle in the

triangulation that uses diagonal , and since every polygon is possible to triangulate ab

(proof to this fact can be found in), there is always a vertex c such that we can draw 1

diagonals and . By doing this we have the triangle fixed and we can split ac cb acbΔ

our problem in solving pairs (a, c) and (c, b), which are sub-problems of the original

problem and we can solve them recursively.

The amount of states is O(n2), since we should consider every pair of points (a, b), and

we need O(n) to consider every possible point c. So, complexity for this part is O(n3)

and the total complexity for our solution is also O(n3), which is good enough for this

1 Mark de Berg · Otfried Cheong. Marc van Kreveld · Mark Overmars. Computational Geometry.
Algorithms and Applications. Third Edition

19

The 2019 ICPC Caribbean Local Contests - Real Contest Editorial

version.

BONUS: If the polygon is convex we can disregard coordinates of the vertex, can you

see why?

20

